
Using DS18B20 digital
temperature sensor on AVR

microcontrollers

Description and application

Version 1.0 (Preliminary)

Research Project Documents
Gerard Marull Paretas

September 2007

Index
1. Introduction...3
2. Making the circuit...4
3. Working with DS18B20..5

3.1. A critical operation: timing...5
3.2. Useful definitions..8
3.3. Thermometer initialization..8
3.4. Read/Write operations...9

3.4.1. Reading/Writing individual bits..9
3.4.2. Reading/Writing bytes...10

3.5. Available commands..11
3.6. The last step: reading the temperature..12

4. Bibliography...15

2

1. Introduction

A few months ago I received two samples of DS18B20 from Maxim. However, I asked for
another chip, not DS18B20, so I decided to notify to Maxim. They agreed about the mistake
and a few days later I received the correct ones, but those two chips remained on my desktop
until one day I decided to examine them. I had thought they would not be very interesting, as
they only had 3 pads. Maybe a voltage regulator, a kind of transistor... But I got a surprise
when I read that it was a digital temperature sensor! At first, I could not understand how it
could be a digital temperature sensor: it only had 3 pads and 2 of them had to be Ground and
Vcc. How could one transfer digital data through only one wire? I had been always using two
wires or more, one of them working as a clock source. However, it is possible to transfer data
through only one wire making it controlled by the microcontroller at very precise intervals.
One common example is the serial line of your computer. The baud rate of both sides (the
computer and a device) must be known in order to send and receive data without errors. I used
serial line before getting DS18B20, but when you set it up on an AVR microcontroller, you
just give some parameters and the device does the rest. But in this case the work will be done
by us. To continue, you just need the materials listed below:

● 1- AVR Microcontroller (ex. Atmega8)
● 1- DS18B20 Digital temperature sensor
● 1- 4K7 Resistor
● A working AVR Toolchain

If you find any mistake in this document, please, report it at gerardmarull@gmail.com.

Notes: In the preliminary version of this document, a copy of the GNU Free Documentation
License is not included, but you can access it by visiting http://www.gnu.org/licenses/fdl.txt.

3

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
mailto:gerardmarull@gmail.com
mailto:gerardmarull@gmail.com
mailto:gerardmarull@gmail.com

2. Making the circuit

The sensor can come in three different packages: TO-92, SO-8 and μSOP-8. You can choose
the most convenient as all operate in the same way. The schematic is shown below for each
package type. For DQ connection you can choose any of your microcontroller's I/O pin.

4

3. Working with DS18B20

In this chapter I will explain how the sensor works and even the necessary C code to get it
running under an AVR microcontroller. Of course, external topics related to microcontrollers
such as the compilation of the code will not be treated. Another requirement is to have a way
to report the temperature that you obtain from the sensor: a serial connection with the
computer or a LCD would be fine. Some of the features that the sensor offers are not treated in
this version of the document (ex. Having multiple sensors in the same bus, CRC computation
or setting Alarm triggers). They might be included in future versions of this document.

3.1. A critical operation: timing

Since we only have one wire to communicate with the sensor, it is necessary to read/write data
at very precise intervals. All these intervals are defined in DS18B20's datasheet. If you take a
brief look, you will see that most of them are just a matter of a few micro-seconds (I will use
the μs abbreviation from now on). This might seem too small for humans, but not for
microcontrollers. A common AVR microcontroller can run up to 16Mhz (some at 20Mhz) so
each clock cycle is very short. In this document I will use the internal 8Mhz clock of an
Atmega1281 (also included in many other models) which means that each clock cycle will
take 0.125μs (1/8000000Hz). AVR Instructions (also called AVR assembler instructions) can
take from 1 to 4 clock cycles to execute, so it is easy to make exact μs delays.
You will probably program in C language, where you do not know which assembler code the
compiler will produce, but you can get it easily.
Let us start with a simple delay function that will be able to execute from 0 to 65535 loops:

inline __attribute__((gnu_inline)) void therm_delay(uint16_t delay){
while(delay--) asm volatile("nop");

}

There is a thing that you might not know: the inline and gnu_inline attributes. This means that
the code inside therm_delay function will be inserted where therm_delay is called instead of
making the call, which would require calling and returning from the function and even
pushing and popping some registers to the stack (a waste of time not desirable in this case).
Now, make another function (I will name it therm_reset) and call therm_delay inside it. This
way we will be able to see which assembler does this code produce. To do that, you have to
invoke the compiler with -S flag. In my case, I have used the following command (avr-gcc
version is 4.2.1):

avr­gcc ­S ­mcall­prologues ­std=gnu99 ­funsigned­char
­funsigned­bitfields ­fpack­struct ­fshort­enums ­mmcu=atmega1281
­Wall ­Wstrict­prototypes ­Os yourfile.c ­o yourfile.s

After that, you should be able to see the file yourfile.s with some assembler code inside. If you
look for therm_delay function code, you should find something like this:

.global therm_delay
.type therm_delay, @function

therm_delay:
/* prologue: frame size=0 */

5

/* prologue end (size=0) */
rjmp .L2

.L3:
/* #APP */

nop
/* #NOAPP */
.L2:

sbiw r24,1
ldi r18,hi8(-1)
cpi r24,lo8(-1)
cpc r25,r18
brne .L3

/* epilogue: frame size=0 */
ret

/* epilogue end (size=1) */
/* function therm_delay size 9 (8) */

.size therm_delay, .-therm_delay

This is only the function code. If you go to therm_reset, you should see something similar:

.global therm_reset
.type therm_reset, @function

therm_reset:
/* prologue: frame size=0 */
/* prologue end (size=0) */

ldi r24,lo8(480)
ldi r25,hi8(480)
rjmp .L14

.L15:
/* #APP */

nop
/* #NOAPP */
.L14:

sbiw r24,1
ldi r18,hi8(-1)
cpi r24,lo8(-1)
cpc r25,r18
brne .L15

There are just two further instructions: ldi. ldi (LoaD Immediate) is used to load a constant
value into a register. In this case I am loading the number 480, and as the function uses an
uint16_t (2-bytes) to store the number of delays, it needs to use two registers (r24 and r25). I
will just explain the meaning of two more instructions that will be useful to understand this
part. The first is nop, which is an instruction that does nothing, and the second is brne
(BRanch if Not Equal) which is a conditional instruction that will jump to .L8 (in this case) if
r25 and r18 are not equal (compared in the instruction before with cpc). You can refer AVR
Instruction Set document (available at www.atmel.com/avr) to know the meaning of the other
instructions, as teaching AVR assembler is not the purpose of this document.
Now, is the moment to start counting the time that this delay loop would take if it was
executed. First, we must separate the instructions ldi, ldi and rjmp that will not enter the
continuous loop. They are only used to load a value and jump to the start of the loop. Looking
at AVR Instruction Set document we can see and calculate the values shown in the following
table:

Instruction Clock Cycles

ldi 1

6

http://www.atmel.com/avr
http://www.atmel.com/avr
http://www.atmel.com/avr

ldi 1

rjmp 2

TOTAL CYCLES 4

Table 3.1.A

For the second part (those instructions involved in the loop) you have to look at L14 (where
the loop starts) and L15 (the code executed on each loop):

Instruction Clock Cycles

nop 1

sbiw 2

ldi 1

cpi 1

cpc 1

brne 2 if true, 1 if false

TOTAL CYCLES Read below

Table 3.1.B

We can calculate the total delay of a loop cycle easily: adding all these instruction clock cycles
but taking care of just one thing: brne is normally true (it uses 2 cycles and jumps to L15)
except in the last loop, when brne condition is false, so it takes only 1 cycle and L15 is not
executed as the code continues with the next instruction. This means we have to subtract 2
cycles from the total (1 from nop and 1 from brne).
Therefore, the total delay of this loop is: (8 cycles * number of loops) – 2 cycles

Finally we have to join everything:
4 cycles (initialization) + ((8 cycles * number of loops) – 2 cycles) =
(8 cycles * number of loops) + 2 cycles
Considering that at 8Mhz each cycle takes 0.125us, the final delay in μs will be:
(8 * 0.125μs * number of loops) + 2 * 0.125μs = (1μs*number of loops) + 0.25μs =
(number of loops)μs + 0.25μs

Since the number of loops is multiplied by 1, putting the number of μs we want, we will get
the same delay in μs directly (plus 0.25μs, which is depreciable in this case), so there is no
need for any conversion before. However, if your clock speed is not as lucky as mine, you can
create a macro that calculates how many loops would be necessary by just giving the μs you
need:

#define F_CPU 3000000UL //Your clock speed in Hz (3Mhz here)
#define LOOP_CYCLES 8 //Number of cycles that the loop takes
#define us(num) (num/(LOOP_CYCLES*(1/(F_CPU/1000000.0))))

Using that macro, your code would look like follows:

therm_delay(us(480)); //We want to make a 480μs delay

7

The value will be automatically transformed by the compiler preprocessor into the
corresponding loops needed by your clock. In this code, where we simulate having a 3Mhz
clock, it would calculate 180 loops.

3.2. Useful definitions

Since you will need to change the level or the direction of the pin where your thermometer is
connected, I recommend you to put the following definitions in your code to make it more
readable and easy to write:

/* Thermometer Connections (At your choice) */
#define THERM_PORT PORTC
#define THERM_DDR DDRC
#define THERM_PIN PINC
#define THERM_DQ PC0
/* Utils */
#define THERM_INPUT_MODE() THERM_DDR&=~(1<<THERM_DQ)
#define THERM_OUTPUT_MODE() THERM_DDR|=(1<<THERM_DQ)
#define THERM_LOW() THERM_PORT&=~(1<<THERM_DQ)
#define THERM_HIGH() THERM_PORT|=(1<<THERM_DQ)

Note that the definitions described in the above chapter (3.1) should also be included in order
to get the code (described in the coming chapters) working.

3.3. Thermometer initialization

The first thing you will need to do before any transaction with the thermometer is to send an
initialization sequence. This sequence consists of a reset pulse transmitted by the master
(microcontroller) followed by a presence pulse sent by the thermometer. The following
graphic shows a timing diagram of the sequence:

As you can see, in the reset pulse the master pulls the line low for a minimum of 480 μs and
finally it releases the line. After that there is a period of 15-60μs to let the thermometer receive
the rising edge (caused by the 4K7 resistor connected to VCC+) and emit the presence pulse,
which is 60-240μs long. Just note that the second part (including the 15-60μs delay) must be
480μs long, too.
A clear implementation in C is shown below:

uint8_t therm_reset(){

uint8_t i;

8

//Pull line low and wait for 480uS
THERM_LOW();
THERM_OUTPUT_MODE();
therm_delay(us(480));

//Release line and wait for 60uS
THERM_INPUT_MODE();
therm_delay(us(60));

//Store line value and wait until the completion of 480uS period
i=(THERM_PIN & (1<<THERM_DQ));
therm_delay(us(420));

//Return the value read from the presence pulse (0=OK, 1=WRONG)
return i;

}

3.4. Read/Write operations

First of all, I will show how to make functions to read/write individual bits (where you have to
take care of timing), and then other functions to read/write an entire byte (which are basically
loops executing the individual bits functions).

3.4.1. Reading/Writing individual bits

Let us take a look at the timing diagrams provided in the datasheet:

In the write operation, we always have to pull the line low at startup. If we want to write 0 we

9

will keep the line low until the end of the sequence (60μs) but if we want to write 1, after a
delay of 1μs we will release it. An implementation in C is shown below:

void therm_write_bit(uint8_t bit){

//Pull line low for 1uS
THERM_LOW();
THERM_OUTPUT_MODE();
therm_delay(us(1));

//If we want to write 1, release the line (if not will keep low)
if(bit) THERM_INPUT_MODE();

//Wait for 60uS and release the line
therm_delay(us(60));
THERM_INPUT_MODE();

}

On the other side, we have the read operation. It is quite similar, but has some differences. We
also have to start pulling the line low for 1μs. Then we have to release the line and wait for
14μs more (14+1=15μs as shown in the diagram). After that, we can read the value of the line,
that will be high if thermometer transmits 1 and low if it transmits 0. Finally, we just have to
wait 45μs more to end the 60μs period. An implementation in C is shown below:

uint8_t therm_read_bit(void){

uint8_t bit=0;

//Pull line low for 1uS
THERM_LOW();
THERM_OUTPUT_MODE();
therm_delay(us(1));

//Release line and wait for 14uS
THERM_INPUT_MODE();
therm_delay(us(14));

//Read line value
if(THERM_PIN&(1<<THERM_DQ)) bit=1;

//Wait for 45uS to end and return read value
therm_delay(us(45));
return bit;

}

3.4.2. Reading/Writing bytes

Now that we can read/write individual bits, doing this for bytes is quite easy: make loops of 8
cycles and store the result in a variable. The implementation in C is shown below:

uint8_t therm_read_byte(void){

uint8_t i=8, n=0;

while(i--){

10

//Shift one position right and store read value
n>>=1;
n|=(therm_read_bit()<<7);

}

return n;

}

void therm_write_byte(uint8_t byte){

uint8_t i=8;

while(i--){
//Write actual bit and shift one position right to make

the next bit ready
therm_write_bit(byte&1);
byte>>=1;

}

}

3.5. Available commands

Now that we are able to read/write data from DS18B20, we have to know which commands
are available to do the operations we need. I will define them in a table with a short
description of each one and its corresponding code. The definitions for your C code will also
be given.

Command Code Description

ROM COMMANDS

Search ROM 0xf0 Used to identify the ROM codes of the available
slaves in the bus, which also lets the master determine
the total number of slaves.

Read ROM 0x33 This command has the same effect as Search ROM,
but it can be used when there is only one device in the
bus. If not, data collision will occur.

Match ROM 0x55 This command followed by a 64-bit ROM code is used
to address a specific slave in the bus. If a slave
matches the code, it will be the only one to respond to
the commands. The others will wait for a reset
sequence.

Skip ROM 0xcc This is used to address all the devices in the bus at the
same time. This could be useful to send commands
such as the start of temperature conversion (Convert T,
0x44) or if there is only one device in the bus.

Alarm Search 0xec This command is nearly the same as Search ROM,
excepting that only devices with a set alarm flag will
respond.

FUNCTION COMMANDS

11

Convert T 0x44 This command is used to start a temperature
conversion, that is stored in the first two bytes of the
Scratchpad. The conversion time is resolution
dependent, -look at table shown in chapter 3.6 . If you
send read slots while conversion is in progress the
slave responds with 0 (low) if it is still in progress or 1
(high) if it has finished (only available if it is not
parasite powered).

Write Scratchpad 0x4e This command allows master to write 3 bytes of data
to the Scratchpad: TH, TL and Configuration
registers. Data must be transferred with least
significant bit first.

Read Scratchpad 0xbe This command allows the master to read the contents
of the Scratchpad. It is 9-bytes long and it is
transferred starting with the least significant byte. If all
bytes are not needed transfer can be stopped by master
issuing a reset.

Copy Scratchpad 0x48 This command copies the contents of TH, TL and
configuration registers from the Scratchpad to the
EEPROM.

Recall E2 0xb8 This command recalls the alarm trigger values (TH
and TL) and configuration data from EEPROM and
places them in the Scratchpad.

Read Power Supply 0xb4 This command is used to determine if a slave is
externally powered or uses parasite power. Parasite
powered slaves will keep the line low after the
command, and high the externally powered ones.

Table 3.5.A

A list of these commands translated into C defines:

#define THERM_CMD_CONVERTTEMP 0x44
#define THERM_CMD_RSCRATCHPAD 0xbe
#define THERM_CMD_WSCRATCHPAD 0x4e
#define THERM_CMD_CPYSCRATCHPAD 0x48
#define THERM_CMD_RECEEPROM 0xb8
#define THERM_CMD_RPWRSUPPLY 0xb4
#define THERM_CMD_SEARCHROM 0xf0
#define THERM_CMD_READROM 0x33
#define THERM_CMD_MATCHROM 0x55
#define THERM_CMD_SKIPROM 0xcc
#define THERM_CMD_ALARMSEARCH 0xec

3.6. The last step: reading the temperature

Now that we are able to send to and read from the thermometer, it is time to learn how to read
the temperature, which is in fact the reason why you are reading this document. The
temperature is stored in the first two bytes of the Scratchpad, which is 9-bytes long and
contains more information than the temperature. Its structure is shown below:

Byte Content Startup value

12

0 Temperature LSB

1 Temperature MSB
0x5005
(+85ºC)

2 TH Register or User Byte 1

3 TL Register or User Byte 2

4 Configuration register

Content stored
in EEPROM

5 Reserved (0xff) -

6 Reserved (0x0c) -

7 Reserved (0x10) -

8 CRC -

Table 3.6.A

A useful thing inside the Scratchpad is the Configuration register. As you should know, the
thermometer can work in four different resolutions (9,10,11 and 12 bits). It comes with a 12-
bit mode selected by default, but it can be changed at any moment using the Write
Scratchpad command (0x4e) and writing there the desired resolution. In the following tables
the structure of Configuration register and information of each resolution is shown
(including necessary values to change it):

CONFIGURATION REGISTER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 R1 R0 1 1 1 1 1

Table 3.6.B

R1 R0 Resolution bits Decimal steps Conversion time

0 0 9 0.5 93.75ms

0 1 10 0.25 187.5ms

1 0 11 0.125 375ms

1 1 12 (default) 0.0625 750ms

Table 3.6.C

As I said, the temperature is stored in the first 2 bytes of the Scratchpad, but we need to know
how to interpret them. We can obtain three important values from the temperature bytes: if it is
positive or negative, the temperature integer digit and the number of decimal steps. The
structure is detailed below:

Least Significant Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I3 I2 I1 I0 D-1 D-2 D-3 D-4

Most Significant Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

S S S S S I6 I5 I4

Table 3.6.D

13

I = Integer digits of Celsius degrees
(signed)
D = Number of decimal steps*
S = Sign (0 = +, 1 = -)

+85.0000 ºC

* For 9-bit resolution only bit 3 is valid, bits 3 and 2 for 10-bit, bits 3, 2 and 1 for 11-bit and
all bits for 12-bit. It even needs to be multiplied by decimal steps constant (shown in 4th

column of table 3.6.C).

Table 3.6.E

Now is the time to make the C implementation. It has been programmed to work with only
one thermometer in the same bus and in 12-bit resolution. It should be easy to change to
another resolution (only take care of decimal steps value). At the end, the temperature is joined
into a char array forming a string like “+85.0000 C” which you can use to send via serial to
your computer, draw into a LCD, or whatever you want. Note that making use of sprintf()
function, saves us from having to take care of the temperature integer digit sugn and S bits of
2 temperature bytes. However, if you do not use sprintf() function, you can convert a signed
number to unsigned using two's complement: (~(variable)+1).

#define THERM_DECIMAL_STEPS_12BIT 625 //.0625

void therm_read_temperature(char *buffer){

// Buffer length must be at least 12bytes long! ["+XXX.XXXX C"]
uint8_t temperature[2];
int8_t digit;
uint16_t decimal;

//Reset, skip ROM and start temperature conversion
therm_reset();
therm_write_byte(THERM_CMD_SKIPROM);
therm_write_byte(THERM_CMD_CONVERTTEMP);
//Wait until conversion is complete
while(!therm_read_bit());
//Reset, skip ROM and send command to read Scratchpad
therm_reset();
therm_write_byte(THERM_CMD_SKIPROM);
therm_write_byte(THERM_CMD_RSCRATCHPAD);

//Read Scratchpad (only 2 first bytes)
temperature[0]=therm_read_byte();
temperature[1]=therm_read_byte();
therm_reset();

//Store temperature integer digits and decimal digits
digit=temperature[0]>>4;
digit|=(temperature[1]&0x7)<<4;
//Store decimal digits
decimal=temperature[0]&0xf;
decimal*=THERM_DECIMAL_STEPS_12BIT;

//Format temperature into a string [+XXX.XXXX C]
sprintf(buffer, "%+d.%04u C", digit, decimal);

}

14

4. Bibliography

MAXIM, “DS18B20 Datasheet”, http://www.maxim-ic.com/

MAXIM, “APPLICATION NOTE 162: Interfacing the DS18X20/DS1822 1-Wire
Temperature Sensor in a Microcontroller Environment ”, http://www.maxim-ic.com/

ATMEL, “AVR Instruction Set ”, http://www.atmel.com/avr

http://www.atmel.com/avr

http://www.maxim-ic.com

15

 Copyright (c) 2007 Gerard Marull Paretas.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2

 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

	1. Introduction
	2. Making the circuit
	3. Working with DS18B20
	3.1. A critical operation: timing
	3.2. Useful definitions
	3.3. Thermometer initialization
	3.4. Read/Write operations
	3.4.1. Reading/Writing individual bits
	3.4.2. Reading/Writing bytes

	3.5. Available commands
	3.6. The last step: reading the temperature

	4. Bibliography

